

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>
Maryam Ramezani maryam.ramezani@sharif.edu

Table of contents

O1
Invertible Linear
Maps

04

L(V) and Change of Basis

02

Basis Review

05

L(V,W) and Change of Basis

03

Change of Basis

Invertible Linear Maps

Invertible, Inverse

Definition

A linear map $T \in L(V, W)$ is called invertible if there exists a linear map $S \in L(W, V)$ such that ST equals the identity operator on V and TS equals the identity operator on W.

A linear map $S \in L(W, V)$ satisfying ST = I and TS = I is called an inverse of T (note that the first I is the identity operator on V and the second I is the identity operator on W).

Inverse is unique

Theorem

An invertible linear map has a unique inverse.

Definition

If T is invertible, then its inverse is denoted by T^{-1} . In other words, if $T \in \mathcal{L}(V, W)$ is invertible, then T^{-1} is the unique element of $\mathcal{L}(W, V)$ such that $T^{-1}T = I$ and $TT^{-1} = I$.

Example

Find the inverse of T(x, y, z) = (-y, x, 4z)

Invertibility

Theorem

A linear map is invertible if and only if it is injective and surjective.

Theorem

Suppose that V and W are finite-dimensional vector spaces, dim V = dim W, and $T \in \mathcal{L}(V, W)$. Then

T is invertible $\Leftrightarrow T$ is injective $\Leftrightarrow T$ is surjective.

Review: Basis

Example

Find the coordinate vector of $2 + 7x + x^2 \in \mathbb{P}^2$ with respect to the basis $B = \{x + x^2, 1 + x^2, 1 + x\}.$

If C = $\{1, x, x^2\}$ is the standard basis of \mathbb{P}^2 then we have $[2 + 7x + x^2]_C = (2, 7, 1)$.

Solution

We want to find scalars $c_1, c_2, c_3 \in \mathbb{R}$ such that

$$2 + 7x + x^2 = c_1(x + x^2) + c_2(1 + x^2) + c_3(1 + x).$$

By matching coefficients of powers of x on the left-hand and right-hand sides above, we arrive at following system of linear equations:

$$c_2 + c_3 = 2$$

 $c_1 + c_3 = 7$
 $c_1 + c_2 = 1$

This linear system has $c_1=3$, $c_2=-2$, $c_3=4$ as its unique solution, so our desired coordinate vector is

$$[2 + 7x + x^2] = (c_1, c_2, c_3) = (3, -2, 4)$$

Change of Basis

Introduction to change of basis

• $B = \{v_1, \dots, v_n\}$ are basis of \mathbb{R}^n .

• $P = [v_1 \ v_2 \ ... \ v_n]$

• $P[a]_B = a$

Theorem

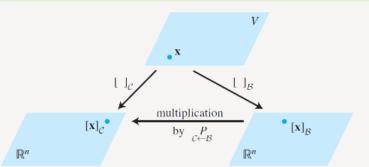
Let B = $\{b_1, b_2, ..., b_n\}$ and C = $\{c_1, c_2, ..., c_n\}$ be basses of a vector space V. Then there is a unique

 $n \times n$ matrix $P_{C \leftarrow B}$ such that

$$[x]_C = P_{C \leftarrow B}[x]_B$$

The columns of $P_{C \leftarrow B}$ are the C-coordinate vectors of the vectors in basis B. That is,

$$P_{C \leftarrow B} = [[b_1]_C \ [b_2]_C \ ... \ [b_n]_C]$$



$$({}_{\mathcal{C} \leftarrow \mathcal{B}}^{P})^{-1} = {}_{\mathcal{B} \leftarrow \mathcal{C}}^{P}$$

$$(P_{\mathcal{C} \leftarrow \mathcal{B}})^{-1} = P_{\mathcal{B} \leftarrow \mathcal{C}}$$

$$P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}, \quad P_{\mathcal{C}}[\mathbf{x}]_{\mathcal{C}} = \mathbf{x}, \quad \text{and} \quad [\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\mathbf{x}$$

$$[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\mathbf{x} = P_{\mathcal{C}}^{-1}P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Example

Find the change-of-basis matrices $P_{C \leftarrow B}$ and $P_{B \leftarrow C}$ for the bases

$$B = \{x + x^2, 1 + x^2, 1 + x\}$$
 and $C = \{1, x, x^2\}$

of \mathbb{P}^2 . Then find the coordinate vector of $2 + 7x + x^2$ with respect to B.

Example

Let
$$b_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $c_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$, $c_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$, the bases for \mathbb{R}^2 given by $B = \{b_1, b_2\}$, $C = \{c_1, c_2\}$.

Find the change-of-coordinates matrix from C to B.

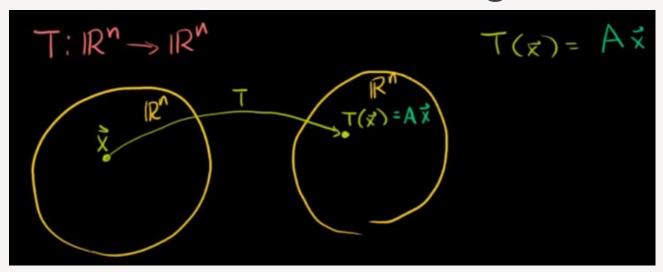
Find the change-of-coordinates matrix from B to C.

Example

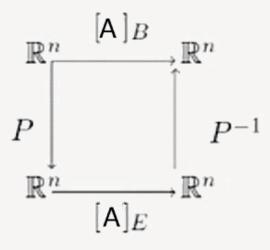
Find the change-of-basis matrix $P_{C \leftarrow B}$, where

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}, C = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}.$$

Transformation with change of basis



- B = $\{v_1, v_2, \dots, v_n\}$ are basis of \mathbb{R}^n .
- $P = [v_1 \ v_2 \ ... \ v_n]$
- $[T(x)]_B = P^{-1}AP[x]_B$



$$[A]_B = P^{-1}[A]_E P$$

L(V,W) & Change of Basis

Matrix representation of linear function

A linear transformation which looks complex with respect to one basis can become much easier to understand when you choose the correct basis.

Important

Let
$$T: V \to W$$
 be a linear function and $u = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \in V$ where $E = \{e_1, \dots, e_n\}$, $B = \{b_1, \dots, b_m\}$ are basis of V, W .

$$u = c_1 e_1 + \dots + c_n e_n$$
 -> $T(u) = c_1 T(e_1) + \dots + c_n T(e_n)$

$$T(u) = d_1b_1 + \dots + d_mb_m$$

$$[T(u)]_B = [[T(e_1)]_B, ..., [T(e_n)]_B][T(u)]_E$$

Linear Transformation

Example

We have B = $\{x^3, x^2, x, 1\}$ and $B' = \{x^2, x, 1\}$ are bases for $P_3(x)$ and $P_2(x)$, respectively. Find the matrix of transformation T: $P_3(x) \to P_2(x)$.

Solution

Since
$$\begin{bmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix}$$
 the vector representation of $a_3x^3 + a_2x^2 + a_1x + a_0 \in \mathbb{P}^3(x)$, we have

$$\begin{bmatrix} \frac{d}{dt} \end{bmatrix}_{\{B,B'\}} = \begin{bmatrix} \frac{d}{dt}(x^3) & \frac{d}{dt}(x^2) & \frac{d}{dt}(x) & \frac{d}{dt}(1) \end{bmatrix} \\
= \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Isomorphisms

Definition

Suppose V and W are vector spaces over the same field. We say that V and W are isomorphic, denoted by $V \cong W$, if there exists an invertible linear transformation

T: $V \to W$ (called an isomorphism from V to W).

If T: $V \to W$ is an isomorphism then so is T^{-1} : $W \to V$.

If T: $V \to W$ and S: $W \to X$ are isomorphism then so is S \circ T: $V \to X$.

in particular, if $V \cong W$ and $W \cong X$ then $V \cong X$.

Theorem

Two finite-dimensional vector spaces over **F** are isomorphic if and only if they

have the same dimension.

Isomorphisms

Example

Show that the vector space $V = \operatorname{span}(e^x, xe^x, x^2e^x)$ and \mathbb{R}^3 are isomorphic.

The standard way to show that two space are isomorphic is to construct an isomorphism between them. To this end, consider the linear transformation T: $\mathbb{R}^3 \to V$ defined by

$$T(a,b,c) = ae^x + bxe^x + cx^2e^x.$$

It is straightforward to show that this function is linear transformation, so we just need to convince ourselves that it is invertible. We can construct the standard matrix $[T]_{B \leftarrow E}$, where $E = \{e_1, e_2, e_3\}$ is the standard basis of \mathbb{R}^3 :

$$[T]_{B \leftarrow E} = [[T(1,0,0)]_B, [T(0,1,0)]_B, [T(0,0,1)]_B]$$

$$= [[e^x]_B, [xe^x]_B, [x^2e^x]_B] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since $[T]_{B \leftarrow E}$ is clearly invertible (the identity matrix is its own inverse), T is invertible too and is thus an isomorphism.

