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Invertible
Linear Maps



Invertible, Inverse

Definition
Alinear map T € L(V, W) is called invertible if there exists a linear map
S € L(W, V) such that ST equals the identity operator on V and T'S equals

the identity operator on W.

A linear map S € L(W, V) satisfying ST =1 and TS = is called an

inverse of T (note that the first I is the identity operator on V and the second I is

the identity operator on W).



Inverse is unique
Theorem

An invertible linear map has a unique inverse.

Definition

If T is invertible, then its inverse is denoted by T 1. In other words, if
T € L(V, W) is invertible, then T~ 1 is the unique element of L(W, V) such
that T T =Tand TT™ ! =1I.

Example

Find the inverse of T(x, y, z) = (-y, x, 4z)



Invertibility

Theorem

Theorem
Suppose that I/ and W are finite-dimensional vector spaces, dim V =dim W/,

and T € L(V, W). Then

T is invertible & T is injective & T is surjective.
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Basis Review



Review: Basis
Example

Find the coordinate vector of 2 + 7x + x2 € P? with respect to the basis
B={x+x%1+x21+x}.

If C={1, x, x?}is the standard basis of P? then we have
2+ 7x + x%]. = (2,7,1).



Solution

We want to find scalars ¢4, ¢,, c3 € R such that
24+ 7x+x%>=c;(x+x2) + (1 +x?%) + c5(1 + x).

By matching coefficients of powers of x on the left-hand and right-hand sides above, we arrive at
following system of linear equations:

Cp+c3=2
c1tcz3 =7
cpt+c, =1
This linear system has ¢c; = 3,¢c, = —2,¢3 = 4 as its unique solution, so our desired coordinate

vector is
[2 + 7x + x2] = (c1,¢5,¢3) = (3,-2,4)



03

Change of
Basts



Introduction to change of basis

e B ={vq,..,v,} are basis of R".

) P= [171 172 Un]



Change of Basis

Theorem

Let B={b;,b,,...,b,} and C={c;, Cy, ..., C,,} be basses of a vector space V. Then
there is a unique
n X n matrix P-_g such that
[x]c = Pceslxls
The columns of P-._p are the C-coordinate vectors of the vectors in basis B.
That is,

PC<—B=[[b1]C [bz]c [bn]C]
(L) = gL

Pglxls =x, Pc[xle=x, and [x]c = P;'x

multiplication
¢ .
by P ['\lb'
(=B

B ]
[x],.

Xlc = Pc'x = P! Pg[x]s



Change of basis

Example

Find the change-of-basis matrices P.p and Pg. for the bases
B={x+x%1+x%1+x} and C = {1,x,x?}
of P2. Then find the coordinate vector of 2 + 7x + x? with respect to B.



Change of basis

Example

11 _[-2 =7 _|-5 2
Let b, = [_3], b, = [ 4 ] c1 = [ 9 ] cy = [ . ] the bases for R“ given by
B ={b1, bz}, C ={c1, c2}.

Find the change-of-coordinates matrix from C to B.

Find the change-of-coordinates matrix from B to C.



Change of basis

Example

Find the change-of-basis matrix P._z, Where

s={lo bl oll7 SHo Slte=llo ollo ol ol 1)
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L(V)
and Change of
Basis



Transformation with change of basis

B={vy,v,,..,v,}are basis of R".
P=[v; v, .. vy]
[T(x)]p = P~*AP[x]p



Change of basis
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L(V,W)
& Change of Basis



Matrix representation of linear function

A linear transformation which looks complex with respect to one basis can become
much easier to understand when you choose the correct basis.

Important

U

Let TV - W be a linear function and u =

€ V whereE = {eq,...,e,},B = {by,.., b}
un
are basis ofV,W.

u=ce +--+cpe, ->T)=c,T(e;)+ -+ c,T(e,)

[T(W]p = [[T(e1)]p, ... [T(e) [p]IT W]k



Linear Transformation

Example

We have B = {x3,x?,x,1} and B’ = {x?, x, 1} are bases for P;(x) and P,(x), respectively. Find the
matrix of transformation T: P;(x) — P,(x).



Solution

as
a
Since ai the vector representation of azx> + a,x? + a;x + a, € P3(x), we have
Ao
d] d d d d
— =[=&3) &) ) —(1)]
O A, = lwe @ &0 &
3 0 0 O
=10 2 0 O
0O 0 1 O
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Isomorphisms
Definition

Suppose V and W are vector spaces over the same field. We say that V and W are
isomorphic, denoted by V' = W, if there exists an invertible linear transformation

T: V = W/(called an isomorphism from V to W).

If T: V = W is an isomorphism then sois T™: W — V.

fT:V - W and S: W — X are isomorphism thensoisSoT:V — X.
in particular, if V=W and W = X then V = X.

Theorem

Two finite-dimensional vector spaces over F are isomorphic if and only if they

have the same dimension.



Isomorphisms

Example

Show that the vector space V = span(e*, xe*, x?e*) and R3 are isomorphic.

The standard way to show that two space are |somorph|c is to construct an isomorphism between them.
To this end, consider the linear transformation T: [R{ — V defined by

T(a,b,c) = ae* + bxe* + cx?%e”*.

It is straightforward to show that this function is linear transformation, so we just need to convince
ourselves that it is invertible. We can construct the standard matrix [T ]z, where E = {e;, e,,e3} is
the standard basis of R3:

[T1g—e = [[T(1,0,0)]5,[T(0,1,0)]5,[T(0,0,1)]5]

1 00
= [[e*]p, [xe*]p, [x*e*]5] = [0 1 0]
00 1

Since [T]gf is clearly invertible (the identity matrix is its own inverse), T is invertible too and is thus
an isomorphism.
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